3.2.94 \(\int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx\) [194]

3.2.94.1 Optimal result
3.2.94.2 Mathematica [C] (verified)
3.2.94.3 Rubi [A] (verified)
3.2.94.4 Maple [A] (verified)
3.2.94.5 Fricas [C] (verification not implemented)
3.2.94.6 Sympy [F]
3.2.94.7 Maxima [F]
3.2.94.8 Giac [F]
3.2.94.9 Mupad [F(-1)]

3.2.94.1 Optimal result

Integrand size = 23, antiderivative size = 155 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
1/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x 
+1/2*c),2^(1/2))/a^3/d+1/6*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c) 
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/5*sin(d*x+c)*cos(d*x+c)^(1/ 
2)/d/(a+a*cos(d*x+c))^3+1/15*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+ 
c))^2-1/10*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a^3+a^3*cos(d*x+c))
 
3.2.94.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.24 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left (\frac {1}{8} (-847+1440 \cos (c+d x)-532 \cos (2 (c+d x))+35 \cos (4 (c+d x))) \csc ^4(c+d x)+35 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}-40 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{210 a^3 d} \]

input
Integrate[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^3,x]
 
output
-1/210*(Sqrt[Cos[c + d*x]]*Csc[c + d*x]*(((-847 + 1440*Cos[c + d*x] - 532* 
Cos[2*(c + d*x)] + 35*Cos[4*(c + d*x)])*Csc[c + d*x]^4)/8 + 35*Hypergeomet 
ric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] - 40*Cos[c + d* 
x]*Hypergeometric2F1[3/4, 7/2, 7/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2])) 
/(a^3*d)
 
3.2.94.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.10, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3243, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)}}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3243

\(\displaystyle \frac {\int \frac {3 \cos (c+d x) a+a}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{5 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 \cos (c+d x) a+a}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 \sin \left (c+d x+\frac {\pi }{2}\right ) a+a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {\cos (c+d x) a^2+4 a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) a^2+4 a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {3 \cos (c+d x) a^3+5 a^3}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {3 \cos (c+d x) a^3+5 a^3}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {3 \sin \left (c+d x+\frac {\pi }{2}\right ) a^3+5 a^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^3 \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {\frac {10 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

input
Int[Sqrt[Cos[c + d*x]]/(a + a*Cos[c + d*x])^3,x]
 
output
(Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + ((2*a*Sqr 
t[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2) + (((6*a^3*Elli 
pticE[(c + d*x)/2, 2])/d + (10*a^3*EllipticF[(c + d*x)/2, 2])/d)/(2*a^2) - 
 (3*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2) 
)/(10*a^2)
 

3.2.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3243
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m* 
((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c 
*(m + 1) - b*d*(m + n + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e 
, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && 
LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c 
, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
3.2.94.4 Maple [A] (verified)

Time = 4.19 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.74

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-22 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3\right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(270\)

input
int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)
 
output
1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d 
*x+1/2*c)^8-10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1 
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^5 
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-22*cos(1/2*d*x+1/2*c)^6+6*cos(1/2*d 
*x+1/2*c)^4+7*cos(1/2*d*x+1/2*c)^2-3)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 
3.2.94.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.22 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) - 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 
output
-1/60*(2*(3*cos(d*x + c)^2 + 4*cos(d*x + c) - 5)*sqrt(cos(d*x + c))*sin(d* 
x + c) + 5*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sq 
rt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^ 
2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d 
*x + c) - I*sin(d*x + c)) + 3*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos 
(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(I*sqrt(2) 
*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + 
I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3 
*d*cos(d*x + c) + a^3*d)
 
3.2.94.6 Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

input
integrate(cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**3,x)
 
output
Integral(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c 
 + d*x) + 1), x)/a**3
 
3.2.94.7 Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 
output
integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^3, x)
 
3.2.94.8 Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 
output
integrate(sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^3, x)
 
3.2.94.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

input
int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^3,x)
 
output
int(cos(c + d*x)^(1/2)/(a + a*cos(c + d*x))^3, x)